On the Moment Map on Symplectic Manifolds
نویسندگان
چکیده
We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact, we prove give an Equivalence Theorem for the symplectic manifolds whose squared moment map ‖ μ ‖ is constant. This result works also in the almost-Kähler setting. Then we study the case when G is a non compact Lie group acting properly on M and we prove a splitting results for symplectic manifolds.
منابع مشابه
A Note on the Moment Map on Symplectic Manifolds
We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact we study the smooth function f =‖ μ ‖. We prove that if a point x ∈ M realizes a local maximum of the squared moment map ‖ μ ‖ then the orbit Gx is symplectic and Gμ(μ(x)) is G-equivariantly symplectomorphic to a product of a flag manifold and a symplectic manifold which i...
متن کاملNon-compact Symplectic Toric Manifolds
The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...
متن کاملSymplectic Toric Manifolds
Foreword These notes cover a short course on symplectic toric manifolds, delivered in six lectures at the summer school on Symplectic Geometry of Integrable Hamiltonian Systems, mostly for graduate students, held at the Centre de Recerca Matemàtica in Barcelona in July of 2001. The goal of this course is to provide a fast elementary introduction to toric manifolds (i.e., smooth toric varieties)...
متن کاملNotes on Symplectic Geometry
1. Week 1 1 1.1. The cotangent bundle 1 1.2. Geodesic flow as Hamiltonian flow 4 2. Week 2 7 2.1. Darboux’s theorem 7 3. Week 3 10 3.1. Submanifolds of symplectic manifolds 10 3.2. Contact manifolds 12 4. Week 4 15 4.1. Symplectic linear group and linear complex structures 15 4.2. Symplectic vector bundles 18 5. Week 5 21 5.1. Almost complex manifolds 21 5.2. Kähler manifolds 24 6. Week 6 26 6....
متن کاملThe Fundamental Group of S1-manifolds
We address the problem of computing the fundamental group of a symplectic S-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a Hamiltonian S-action. Several examples are presented to illustrate our main results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006